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1 OVERVIEW

In Section 2, we discuss the properties of vector-valued importance sampling and entry-wise stratification estimators.
These properties reveal their inherent challenges in handling vector-valued integration, which motivates the
development of ratio control variates. Section 2.3 introduces two additional variants of importance sampling for
vector-valued problems, which are proved to be inferior to vector-valued importance sampling.

In Section 3, we briefly review difference control variates with multiple auxiliaries and how to get the optimal
regression constants. This provides a foundation for the subsequent discussion on multi-auxiliary RCV.

In Section 4.1, we show how to approximate the mean squared error (MSE) and bias for the basic ratio estimator.
In Section 4.2, we introduce several bias-reduced and debiased variants of ratio estimators and analyze their MSE
and bias. In Section 4.3, we discuss the pitfalls of using one-sample RCV at each path vertex, which leads to an
inconsistent estimator. This motivates the use of path-space RCV. In Section 4.4, we present a method to estimate
the confidence in the accuracy of the auxiliary and improve RCV performance. In Section 4.5, We demonstrate
three strategies for integrating multiple auxiliaries into a single RCV estimator.
For clarity, all lengthy proofs are deferred to the Appendix A.

2 IMPORTANCE SAMPLING

2.1 Vector-valued importance sampling

We formally define the vector-valued importance sampling estimator as follows:

Estimator 1. Vector-valued importance sampling.We draw 𝑁 samples 𝑋𝑖 , 𝑖 = 1, ..., 𝑁 from a distribution
𝑔(𝑥). For each sample 𝑋𝑖 , we always compute all function values 𝑓𝑗 (𝑋𝑖 ), for every 𝑗 = 1, ..., 𝑀 , contributing to
their respective estimations:

F̂𝐼𝑆 =

{
𝑓𝑗
𝐼𝑆

=
1
𝑁

𝑁∑︁
𝑖=1

𝑓𝑗 (𝑋𝑖 )
𝑔(𝑋𝑖 )

, with 𝑗 = 1, ..., 𝑀. (1)

Lemma 1. The MSE of the vector-valued importance sampling estimator (Estimator 1) is minimized when
the PDF g(x) is proportional to the L2-norm of integrand f: 𝑔∗ (𝑥) ∝

√︃∑𝑀
𝑗=1 𝑓

2
𝑗
(𝑥). (proof: Appendix A.1)

However, even if we use optimal 𝑔∗, Estimator 1 generally can not achieve zero-variance:
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Lemma 2. The vector-valued importance sampling estimator (Estimator 1) generally cannot achieve
zero-variance, even if we use optimal 𝑔∗ (𝑥) and allM integrands are non-negative. (proof: Appendix A.2)

Hereby we realize the limitation of the vector-valued importance sampling estimator: despite reusing all
samples across integrands, the estimator loses the potential to use different importance sampling distributions
for different integrand 𝑓𝑗 . This motivates us to investigate the entry-wise stratification estimator.

2.2 Entry-wise stratification

Unlike in the main paper, we define entry-wise stratification here in a more detailed and general way:

Estimator 2. Entry-Wise Stratification.We partition𝑀 functions into 𝐾 strata, S𝑘 , where 𝑘 = 1, · · · , 𝐾 , which
are mutually exclusive and collectively exhaustive. Then, we use 𝐾 different importance sampling distributions,
𝑔𝑘 , to estimate the integrals in each strata independently, with a deterministic number of samples 𝑁𝑘 :

F̂𝐸𝑊𝑆 =

 𝑓𝑗
𝐸𝑊𝑆

=
1

𝑁𝑘 ( 𝑗 )

𝑁𝑘 ( 𝑗 )∑︁
𝑗

𝑓𝑗 (𝑋𝑖 )
𝑔𝑘 ( 𝑗 ) (𝑋𝑖 )

, with 𝑗 = 1, · · · , 𝑀. (2)

where 𝑘 ( 𝑗)denotes the strata the function 𝑓𝑘 belongs to. We restrict
∑
𝑘 𝑁𝑘 = 𝑁 to maintain an equal sample

budget.

Lemma 3. The entry-wise stratification estimator (Estimator 2) may achieve lower variance than the vector-
valued importance sampling estimator (Estimator 1), but none of them dominates (proved in Appendix A.3).

Therefore, whether entry-wise stratification or vector-valued importance sampling is better is really case by
case. It could be challenging to rigorously determine which one is better in practice.

2.3 Other variants of importance sampling

We also enumerate two more variants of importance sampling, which appear to fall between Estimator 1 and
Estimator 2. However, they are later shown to be always equal to or worse than Estimator 1 in optimal scenarios.

Estimator 3. Random Mixture Importance Sampling. To draw each sample, we first choose one out of𝑀
function to evaluate, with index 𝑘𝑖 , from a discrete probability 𝑝 (𝑘). Then, we further draw the actual sample
from a conditional PDF 𝑔(𝑥 |𝑘), and will have:

F̂𝐼𝑆
𝑆𝑐𝑎𝑙𝑎𝑟

=

{
1
𝑁

𝑁∑︁
𝑖=1

𝑓𝑗 (𝑋𝑖 )1𝑘=𝑗
𝑔(𝑋𝑖 |𝑘𝑖 )𝑝 (𝑘𝑖 )

, with 𝑗 = 1, · · · , 𝑀, (3)

where 1𝑘=𝑗 is the indicator function that equals 1 if 𝑘 = 𝑗 and 0 otherwise. The estimator essentially uses different
importance functions 𝑔(𝑥 | 𝑗) to evaluate each function 𝑓𝑗 independently. and uses a random probability 𝑝 (𝑘) to
allocate the samples for each estimation. It is analogous to the random mixture in the MIS literature.

Lemma 4. The variance of the random mixture importance sampling estimator (Estimator 3) is minimized
when 𝑔(𝑥 |𝑘)𝑝 (𝑘) ∝ |𝑓𝑘 (𝑥) | (proved in Appendix A.4).
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Lemma 5. When using optimal distributions for both vector-valued importance sampling (Estimator 1)
and random-mixture importance sampling (Estimator 3), the vector-valued importance sampling estimator
always provides lower or equal variance than the random-mixture version, under equal samples comparison.
(proved in Appendix A.5)

Estimator 4. Partial Vector-Valued Importance Sampling. Alternatively, we start with vector-valued
importance sampling. To adapt more for each integrand 𝑓𝑗 (𝑥), we use a different acceptance rate 𝑝 (𝑥 | 𝑗), and
probabilistically discard the sample using 𝑝 . Therefore, each integrand effectively receives a different importance
sampling distribution 𝑝 (𝑥 | 𝑗)𝑔(𝑥). It gives an unbiased estimator:

F̂𝐼𝑆
𝑃𝑎𝑟𝑡𝑖𝑎𝑙

=

{
1
𝑁

𝑁∑︁
𝑖=1

𝑓𝑗 (𝑋𝑖 )
𝑔(𝑋𝑖 )𝑝 (𝑋𝑖 | 𝑗)

, with 𝑗 = 1, · · · , 𝑀. (4)

Lemma 6. When using arbitrary but same distributions 𝑔(𝑥) for both vector-valued importance sam-
pling (Estimator 1) and the partial vector-valued version (Estimator 4), the vector-valued importance
sampling estimator always provides lower or equal variance, under equal samples comparison (proved in
Appendix A.6).

Therefore, these two variants are less attractive than those mentioned in our main paper.

3 DIFFERENCE CONTROL VARIATES

3.1 Multiple regression control variates

To prepare for the subsequent discussions on ratio control variates with multiple auxiliaries, we briefly recap the
multiple regression control variates estimator (Chapter 8.9, [Owen 2013]):

𝑓 = 𝑓 +
𝐾∑︁
𝑘=1

𝛽𝑘 (𝐻𝑘 − ℎ𝑘 ), (5)

where ℎ𝑘 (𝑥), 𝑘 = 1, · · · , 𝐾 are auxiliary functions with known integral values 𝐻𝑘 =
∫
ℎ𝑘 (𝑥)d𝑥 , and 𝛽𝑘 are

constant weights to rescale each auxiliary function ℎ𝑘 .

Lemma 7. The optimal 𝛽 can be estimated by:
𝛽∗ = Var(ℎ(𝑥))−1Cov(ℎ(𝑥), 𝑓 (𝑥)), (6)

(see Owen’s book or Appendix A.7)
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4 RATIO ESTIMATORS

4.1 Approximate MSE and Bias Ratio Estimator

4.1.1 Approximate MSE of Ratio Estimator. We can approximate the MSE of a basic ratio estimator 𝑓 /ℎ̄:

Lemma 8. The MSE of the Ratio Estimator can be approximated as

MSE
[
𝐹𝑅𝑎𝑡𝑖𝑜

]
≈ 1
𝑁

∫ (𝑓 (𝑥) − 𝐹 · ℎ(𝑥))2

𝑔(𝑥) d𝑥 . (7)

This is proved in Appendix A.8. The derivation is similar to that of the MSE for WIS.

4.1.2 Exact Bias of Ratio Estimator. Hartley and Ross [Hartley and Ross 1954] gave an exact expression of the
bias for the basic ratio estimator, using the property of covariance:

Cov( 𝑓
ℎ̄
, ℎ̄) = E

[
𝑓
]
− E

[
𝑓

ℎ̄

]
E

[
ℎ̄
]

(8)

E
[
𝑓

ℎ̄

]
=
E

[
𝑓
]

E
[
ℎ̄
] −

Cov( 𝑓
ℎ̄
, ℎ̄)

E
[
ℎ̄
] , therefore: (9)

Lemma 9. The exact bias of the basic ratio estimator is given by

Bias
[
𝑓

ℎ̄

]
= E

[
𝑓

ℎ̄

]
−
E

[
𝑓
]

E
[
ℎ̄
] = −

Cov( 𝑓
ℎ̄
, ℎ̄)

𝐻
. (10)

Notice, although Eq. (11) is an exact expression, the covariance term involves 𝑓

ℎ̄
, which makes the term

intractable in practice. Therefore, directly debiasing the ratio of mean estimator is challenging.

4.1.3 Approximate Bias of Ratio Estimator with Taylor Expansion. Sukhatme et al. [Sukhatme et al. 1984] approxi-
mate the bias by applying Taylor expansion and retaining up to 𝑂 ( 1

𝑁
) terms. Similarly,

Lemma 10. The approximation bias of the basic ratio control variates estimator is given by

𝐵𝑖𝑎𝑠

[
𝑓

ℎ̄
· 𝐻

]
≈ 𝐹

𝑁

[
Var [ℎ(𝑥)]

𝐻 2 − Cov [ℎ(𝑥), 𝑓 (𝑥)]
𝐹𝐻

]
. (11)

We have rederived the conclusion in the context of Monte Carlo integration in Appendix A.9.

4.1.4 Numerical Validation of MSE and Bias Approximation. In Fig. 2, we show the MSE and bias evaluated with
numerical simulation and the approximation derived in Section 4.1.1 and Section 4.1.3.
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function & auxiliary log(sample) - log(MSE) log(sample) - log(Bias)

Fig. 1. We compare the numerical MSE and bias estimation with the estimated expressions derived in Section 4.1.1 and

Section 4.1.3. We can observe that the approximation fits the simulation well in large sample counts. Our approximation

works well especially for large enough sample counts. As we numerically evaluate the reference and all expectations, the bias

estimation becomes inaccurate when it is very close to 0, leading to the waving curves, but this doesn’t affect our conclusion.
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4.2 Bias-reduced and debiased ratio estimators.

4.2.1 Bias and Variance of Almost-Unbiased Ratio Estimators. By approximate bias analysis as we do in Sec-
tion 4.1.3, people can design estimators that remove the low-order terms of bias, namely almost-unbiased ratio
estimators. We list some of these estimators’ approximate bias and MSE in Table 1. We adapt the notation and
results from Tin’s work [Tin 1965] for the table, where:

𝑓 =
1
𝑁

𝑁∑︁
𝑖=1

𝑓 (𝑋𝑖 ); ℎ̄ =
1
𝑁

𝑁∑︁
𝑖=1

ℎ(𝑋𝑖 ); 𝑟 =
1
𝑁

𝑁∑︁
𝑖=1

𝑓 (𝑋𝑖 )
ℎ(𝑋𝑖 )

; 𝐶𝑖 𝑗 =
𝐾𝑖 𝑗

𝐻 𝑖𝐹 𝑗

𝑆 𝑓 ℎ =

∫
(𝑓 (𝑥) − 𝐹 ) (ℎ(𝑥) − 𝐻 )d𝑥 ; 𝑆ℎℎ =

∫
(ℎ(𝑥) − 𝐻 ) (ℎ(𝑥) − 𝐻 )d𝑥

In 𝐶𝑖 𝑗 , the 𝐾𝑖 𝑗 denotes the (𝑖, 𝑗)th cumulant of ℎ and 𝑓 . As here all 𝑖 and 𝑗 are less than 4, it is similar to their
moments, i.e.

𝐾𝑖 𝑗 = E
[
(ℎ(𝑥) − 𝐻 )𝑖 (𝑓 (𝑥) − 𝐹 ) 𝑗

]
(12)

Table 1. We list the vanilla ratio estimator (Ratio of Mean), Quenouille’s estimator [Quenouille 1956], Beale’s estimator [EML

1956], Tin’s estimator [Tin 1965], Mean of Ratio estimator, Hartley Ross’s Estimator [Hartley and Ross 1954], with their

(approximated) mean squared error and bias. (*: For the average of ratio, both MSE and Bias are exact expressions instead of

approximations.)

Estimator Estimator Formula MSE (w/ Approximation) Bias (w/ Approximation)

Vanilla 𝑅̂ =
𝑓

ℎ̄

1
𝑁
𝐹 2
𝐻 2 (𝐶11 +𝐶00 − 2𝐶01 ) + O

(
1
𝑁 2

) 1
𝑁
𝐹
𝐻

(𝐶20 − 𝐶11 )
+ 1
𝑁 2

𝐹
𝐻

(𝐶21 − 𝐶30 + 3𝐶20 (𝐶20 − 𝐶11 ) )

Quenouille’s 𝑅̂1 =

[
2 · 𝑓

ℎ̄
− 1

2 (
𝑓1
ℎ̄1

+ 𝑓2
ℎ̄2

)
]

1
𝑁
𝐹 2
𝐻 2 (𝐶11 +𝐶00 − 2𝐶01 ) + O

(
1
𝑁 2

)
1
𝑁 2

𝐹
𝐻

[6 (𝐶20 (𝐶20 − 𝐶11 ) ) − 2 (𝐶21 − 𝐶30 ) ]

Beale’s 𝑅̂2 =
𝑓

ℎ̄
· 1+𝑆𝑓 ℎ/(𝑁 ·𝑓 ℎ̄)

1+𝑆ℎℎ/(𝑁 ·ℎ̄ℎ̄)
1
𝑁
𝐹 2
𝐻 2 (𝐶11 +𝐶00 − 2𝐶01 ) + O

(
1
𝑁 2

)
1
𝑁 2

𝐹
𝐻

[−2(𝐶21 − 𝐶30 ) − 2(𝐶20 (𝐶20 − 𝐶11 ) ) ]

Tin’s 𝑅̂3 =
𝑓

ℎ̄
·
[
1 + 1

𝑁

(
𝑆𝑓 ℎ

𝑓 ℎ̄
− 𝑆ℎℎ

ℎ̄ℎ̄

)]
1
𝑁
𝐹 2
𝐻 2 (𝐶11 +𝐶00 − 2𝐶01 ) + O

(
1
𝑁 2

)
1
𝑁 2

𝐹
𝐻

[−2(𝐶21 − 𝐶30 ) − 3(𝐶20 (𝐶20 − 𝐶11 ) ) ]

Average of Ratio* 𝑅̂4 = 𝑟 1
𝑁
Var

[
𝑓

ℎ

]
+

(
Cov

(
𝑓

ℎ
, ℎ

))2
Cov

(
𝑓

ℎ
, ℎ

)
Hartley Ross’s 𝑅̂5 = 𝑟 + 𝑁

𝑁 −1
𝑓 −𝑟ℎ̄
𝐻

1
𝑁
𝐹 2
𝐻 2 (𝐶11 +𝐶00 − 2𝐶01 ) + O

(
1
𝑁 2

)
0

4.2.2 Unbiasedness of Hartley Ross’s Estimator. As discussed in the main paper, Hartley Ross’s estimator is a
fully debiased variant of the ratio estimator. The proof of its unbiasedness is included in Appendix A.10.

4.2.3 1D Example Considering Bias and MSE. In Fig. 2, we depicted the mean squared error (MSE) and bias for
each estimator listed in Table 1. We numerically measure reference integral and all expectations, leading to an
unstable bias estimation near convergence.

Generally, under high sample counts, all techniques have almost similar convergence speeds and usually close
MSE values, similar to our MSE analysis in Table 1. Under lower sample counts, different estimators may behave
quite differently, but there is no general rule to say which is always better. As we can observe, Hartley Rose
usually has a higher MSE when the auxiliary is well correlated, but when bias is so huge that it dominates the
MSE, HR may also be the best. In terms of bias, the vanilla ratio estimator is almost always the most biased.
However, other estimators do not necessarily lead to lower MSE despite having a lower bias.

Specifically, we can observe that in the second example, the Hartley Ross’s Estimator has significantly higher
MSE than other techniques. This violates our MSE analysis in Table 1, which indicates with high sample counts,
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functions & auxiliary log(#samples) - log(MSE) log(#samples) - log(Bias)MSE under Low Sample Count δf(x) and δh(x)

Fig. 2. We show a few 1D curve examples, measuring their mean squared error (MSE), low-sample MSE, and bias under

different SPPs.

all methods should have very similar MSE. The reason is very likely because, in this example, the auxiliary ℎ(𝑥),
unfortunately, violates the assumption in the Taylor expansion approximation of the MSE for Hartley Ross’s
Estimator.
The variance approximation of Hartley Ross’s Estimator [Goodman and Hartley 1958] highly depend on the

assumption that:

𝛿ℎ(𝑥) =
����ℎ(𝑥) − 𝐻𝐻

���� ≪ 1 and 𝛿 𝑓 (𝑥) =
���� 𝑓 (𝑥) − 𝐹𝐹

���� ≪ 1. (13)

Such an assumption is quite restrictive in practice, and we can observe in the rightmost column of Fig. 2 that both
the second and third examples break the assumption. Hence, the approximation variance is far less legitimate. On
the contrary, for the vanilla ratio estimator and its almost-unbiased variants, the corresponding assumption is:

𝛿ℎ̄(𝑥) =
����ℎ̄(𝑥) − 𝐻𝐻

���� ≪ 1 and 𝛿 𝑓 (𝑥) =
���� 𝑓 (𝑥) − 𝐹𝐹

���� ≪ 1. (14)

As we know, the average of samples will ultimately converge to its expectation; with large sample counts, such
an assumption is very loose. As a result, we may expect the actual MSE of Hartley Ross’s estimator to potentially
perform worse than other biased variants, especially in large sample counts.
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4.3 Ratio Estimator with Nested Integration

In path tracing, multi-bounce path integrals are crucial for global illumination effects. This involves recursive
integration estimation, which can be quite non-trivial for many non-nested estimators to extend to. For simplicity,
we only discuss the case involving one nested integration, but all discussions can be trivially extended.

A 2-bounce path tracing problem can be formulated as:

𝐹 =

∫
𝑓1 (𝑥)𝐹2 (𝑥)d𝑥 =

∫
𝑓1 (𝑥)

(∫
𝑓2 (𝑥,𝑦)d𝑦

)
d𝑥, (15)

where 𝑥 and 𝑦 are hemispherical solid angles on the first and second bounce, respectively. The internal integrand
𝑓2 is conditional on 𝑥 , as it varies with shading points determined by 𝑥 .

A Naïve but Worrisome Adaptation. One naïve way to extend any non-nested estimator 𝐹 = Est(·) to a nested
problem is to apply it recursively at each level of integration:

𝐹 = Est(𝑋𝑖 · Est(𝑋𝑖 , 𝑌𝑖 )) . (16)

The fundamental path-tracing estimator we use follows such patterns, where Est(·) used is a one-sample stan-
dard Monte Carlo estimator. However, for more general Est, using this formulation involves several critical
considerations:

(1) Unbiasedness: If Est(·) is an unbiased estimator, then Est(𝑋𝑖 · Est(𝑋𝑖 , 𝑌𝑖 )) is also unbiased, thanks to the
linearity.

(2) Consistency: However, if Est(·) is a consistent estimator, then Est(𝑋𝑖 · Est(𝑋𝑖 , 𝑌𝑖 )) is not necessarily
consistent. As a counterexample, we show when Est is the ratio control variates estimator, the entire
estimator may no longer keep consistency.

(3) Branching: We may apply debiasing techniques for inner estimations to avoid inconsistency. However, if
the debiased estimator requires more than one sample, the branching may cause exponential evaluation
increase when depth gets larger [West andMukherjee 2024]. Unfortunately, all debias techniques discussed
in Section 4.2 require at least two samples.

Path-Space Ratio Estimator. Although we cannot simultaneously avoid branching and inconsistency under
Eq. (16), there is another way out. Specifically, we claim the following estimator is consistent:

𝐹𝑅𝑎𝑡𝑖𝑜
𝑃𝑎𝑡ℎ

=

∑𝑁
𝑛=1 𝑓1 (𝑋𝑖 ) 𝑓2 (𝑋𝑖 , 𝑌𝑖 )∑𝑁
𝑛=1

ℎ1 (𝑋𝑖 )
𝐻1

ℎ2 (𝑋𝑖 ,𝑌𝑖 )
𝐻2 (𝑥 )

. (17)

It is easy to identify the nominator as an unbiased estimator of target integral cause this is exactly the basic
path-tracing estimator. Therefore, once the denominator converges to one, the entire estimator will be consistent,
and it can be proved as follows:

E
[
ℎ1 (𝑋𝑖 )
𝐻1

ℎ2 (𝑋𝑖 , 𝑌𝑖 )
𝐻2 (𝑥)

]
=

∫
ℎ1 (𝑥)
𝐻1

(∫
ℎ2 (𝑥,𝑦)
𝐻2 (𝑥)

d𝑦
)
d𝑥 (18)

=

∫
ℎ1 (𝑥)
𝐻1

· 1d𝑥 = 1. (19)

One principal way to look at this is regarding the path formulation of the rendering equation, where we eventually
formulate it as one global joint integral of all vertices, instead of some conditional nested integrals. We use the
ratio control variates on this joint integral, and the critical point is we can construct such global auxiliary function
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(a) (b) (c) (d)
Fig. 3. (a) Reference rendering of the scene with 3-bounce path tracing, with chromatic BRDF. (b) Bias of Naïve nested ratio

estimator, N=20. (c) Bias of path-space ratio estimator, N=20. (d) Bias of Hartley-Ross estimator on top of path-space ratio

estimator.

as the product of local normalized auxiliaries:

ℎ(𝑥,𝑦, · · · ) = ℎ1 (𝑥)
𝐻1

· ℎ2 (𝑥,𝑦)
𝐻2 (𝑥)

· · · . (20)

As all random vairables 𝑥,𝑦, · · · are indepdently drawn,

E [ℎ(𝑥,𝑦, · · · )] = E
[
ℎ1 (𝑥)
𝐻1

]
· E

[
ℎ2 (𝑥,𝑦)
𝐻2 (𝑥)

]
· · · = 1. (21)

The general principle behind is E [𝐴 · 𝐵] = E [𝐴] · E [𝐵] when 𝐴 and 𝐵 are independent.
We can also easily build a debiased estimator on top of it without exponential branching. We simply substitute

all 𝑓 and ℎ in Hartley Ross estimator with 𝑓 = 𝑓1 (𝑋𝑖 ) 𝑓2 (𝑋𝑖 , 𝑌𝑖 ) and ℎ =
ℎ1 (𝑋𝑖 )
𝐻1

· ℎ2 (𝑋𝑖 ,𝑌𝑖 )
𝐻2 (𝑋𝑖 ) .

Consistency of the path space ratio estimator and the unbiasedness of its Hartley-Ross variant are illustrated
in Fig. 3.
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4.4 Regression Ratio Estimator and Online Learning

For most variance reduction techniques, like importance sampling, control variates, and ratio control variates,
the variance reduction may be less effective if the auxiliary function does not closely match the actual integrand.
In the worst case, the variance could increase dramatically. We discuss how multiple auxiliaries are used in
difference control variates with some confidence constants 𝛽 in Section 3.1.
Inspired by that, we introduce its counterpart for regression control variates:

𝐹𝑅𝑎𝑡𝑖𝑜
𝑅𝑒𝑔

=

[
1
𝑁

𝑁∑︁
𝑖=1

𝑓 (𝑋𝑖 )
] (

𝐻

1
𝑁

∑𝑁
𝑖=1 ℎ(𝑋𝑖 )

)𝛼
(22)

where 𝛼 controls our belief in auxiliary ℎ(𝑥). When 𝛼 = 0, it becomes a normal MC estimator; when 𝛼 < 0, it
essentially becomes a product estimator. The estimator is always consistent for ∀𝛼 ∈ R. The same estimator has
already been widely disccused in ratio estimator context [Naik and Gupta 1996].

Later in Section 4.5, we will show that the approximately optimal 𝛼 can be obtained through regression, similar
to the optimal 𝛽 in difference control variates. We explored learning this parameter online, as shown in Fig. 4

Reference Alpha (α) Improvement

relMSE

relMSE
Reference

0.01907

0.03862
(Ours) RCV

0.00646

0.00311
(Ours) RCV w/ α Learned α Improvement

MSE relMSE

Reference Alpha (α) Improvement

relMSE

relMSE
Reference

0.01307

0.01991
(Ours) RCV

0.01449

0.01889
(Ours) RCV w/ α α Improvement

MSE relMSE

Fig. 4. We use NEE with RCV to handle chromatic lights and employ online regression to estimate the optimal 𝛼 for Eq. (22).

In the Bedroom example, we observe that in the shadow regions, the corresponding auxiliary performs poorly as it does not

account for visibility, causing 𝛼 to no longer be white. Using online learning for 𝛼 significantly improves the results in these

regions, as illustrated in the improvement figure, where red indicates improvement by using 𝛼 .
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4.5 Ratio Estimators with Multiple Auxiliary Variables

Multiple Importance Sampling (MIS) is widely used in rendering to combine multiple sampling techniques to
reduce variance. We can also analogously combine multiple auxiliary functions for ratio estimators. Specifically,
we introduce three approaches here.

Multiple Regression Ratio Estimator. Based on the fact that the 𝐻/
( 1
𝑁

∑
ℎ(𝑋𝑖 )

)
term converges to one when 𝑁

approaches infinity, we can further see: 1) If we multiply multiple such terms, their product also converges to 1;
2) If we add arbitrary power on top of each term, it still converges to 1. Thus, we can get the estimator:

𝐹𝑅𝑎𝑡𝑖𝑜
𝑀𝑅𝑒𝑔

=

[
1
𝑁

𝑁∑︁
𝑖=1

𝑓 (𝑋𝑖 )
] (

𝐻1
1
𝑁

∑𝑁
𝑖=1 ℎ1 (𝑋𝑖 )

)𝛼1 (
𝐻2

1
𝑁

∑𝑁
𝑖=1 ℎ2 (𝑋𝑖 )

)𝛼2

(23)

The estimator has a strong connection with regression control variates with multiple auxiliaries [Owen 2013].

Lemma 11. The optimal MSE of Eq. (23) can be achieved when 𝛼∗
𝑘
= 𝛽∗

𝑘

ℎ𝑘

𝑓
, where 𝛽∗

𝑘
is the optimal regres-

sion constants for multiple regression difference control variates Section 3.1. (proved in Appendix A.11)

Random Mixture Multiple Ratio Estimator. As integration is a linear operation,
∫
[𝛼1ℎ1 (𝑥) + 𝛼2ℎ2 (𝑥)] d𝑥 =

𝛼1𝐻1 + 𝛼2𝐻2, which leads to an estimator analogous to random mixture [Owen 2013]:

𝐹𝑅𝑎𝑡𝑖𝑜
𝑅𝑀𝑖𝑥

=

[∑𝑁
𝑖=1 𝑓 (𝑋𝑖 )

]
[𝛼1𝐻1 + 𝛼2𝐻2]∑𝑁

𝑖=1 [𝛼1ℎ1 (𝑋𝑖 ) + 𝛼2ℎ2 (𝑋𝑖 )]
(24)

Lemma 12. The optimal MSE of Eq. (24) can be achieved by solving a least square 𝐴 = 𝐵 · 𝛼 , where

𝐴𝑖 =

∫ 1
𝑔(𝑥) [ℎ𝑖 (𝑥) − ℎ1 (𝑥)] [𝑓 (𝑥) − 𝐹 · ℎ1 (𝑥)] d𝑥 (25)

𝐵𝑖𝑘 =

∫
𝐹

𝑔(𝑥) [ℎ𝑖 (𝑥) − ℎ1 (𝑥)] [ℎ𝑘 (𝑥) − ℎ1 (𝑥)] d𝑥 . (26)

(proved in Appendix A.12)

Deterministic Mixture Multiple Ratio Estimator. Moreover, we can also adapt the structure of deterministic
mixture [Owen 2013], where we essentially decompose the target integrand 𝑓 (𝑥) into 2 terms,𝑤1 (𝑥) 𝑓 (𝑥) and
𝑤2 (𝑥) 𝑓 (𝑥), where𝑤1 (𝑥) +𝑤2 (𝑥) = 1 should hold for all 𝑥 that 𝑓 (𝑥) ≠ 0 just like MIS. Then, we evaluate each
term separately and use different auxiliaries:

𝐹𝑅𝑎𝑡𝑖𝑜
𝐷𝑀𝑖𝑥

=

∑𝑁
𝑖=1𝑤1 (𝑋𝑖 ) 𝑓 (𝑋𝑖 )𝐻1∑𝑁

𝑖=1 ℎ1 (𝑋𝑖 )
+

∑𝑁
𝑖=1𝑤2 (𝑋𝑖 ) 𝑓 (𝑋𝑖 )𝐻2∑𝑁

𝑖=1 ℎ2 (𝑋𝑖 )
(27)

This is how we adapt for MIS in the main paper, but optimal weighting functions𝑤𝑖 seem very hard to write
explicitly, as we discuss in Appendix A.13. In practice, we simply use either balance heuristic or power heuristic
weights for simplicity.
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A PROOFS

A.1 Proof of Theorem 1

Theorem 1 The MSE of the vector-valued importance sampling estimator is minimized when the PDF g(x) is
proportional to the L2-norm of integrand f: 𝑔∗ (𝑥) ∝

√︃∑𝐾
𝑘=1 𝑓

2
𝑘
(𝑥).

Proof. The variance sum of the vector-valued importance sampling estimator is:

Var
[
F̂𝐼𝑆

]
=

𝑀∑︁
𝑗=1

Var
[
𝐹 𝑗
𝐼𝑆

]
=

1
𝑁

𝑀∑︁
𝑗=1

(∫
Ω

𝑓 2
𝑗 (𝑥)
𝑔(𝑥) d𝑥 − 𝐹 2

𝑗

)
. (28)

The minimizing PDF 𝑔(𝑥) can be found via Lagrange multipliers with functional derivative:

𝑔∗ (𝑥) = arg min
𝑔 (𝑥 )

[
𝑀∑︁
𝑗=1

(∫
Ω

𝑓 2
𝑗 (𝑥)
𝑔(𝑥) d𝑥 − 𝐹 2

𝑗

)
+ 𝜆

(∫
𝑔(𝑥)d𝑥 − 1

)]
(29)

𝜕

𝜕𝑔∗ (𝑥)

[
𝐾∑︁
𝑗=1

(∫
Ω

𝑓 2
𝑗 (𝑥)
𝑔∗ (𝑥) d𝑥 − 𝐹 2

𝑗

)]
= 0 + 𝜆 (30)

−
𝐾∑︁
𝑗=1

𝑓 2
𝑗 (𝑥)
𝑔2 (𝑥) + 𝜆 = 0 (31)

(32)

As a result, we can get the optimal 𝑔∗ (𝑥):

𝑔∗ (𝑥) =

√︄∑𝐾
𝑗=1 𝑓

2
𝑗
(𝑥)

𝜆
. (33)

http://www.jstor.org/stable/2589524
http://www.jstor.org/stable/2589524
http://www.jstor.org/stable/2281870
https://doi.org/10.1038/174270a0
https://doi.org/10.1080/03610926.2020.1740270
https://arxiv.org/abs/https://doi.org/10.1080/03610926.2020.1740270
https://artowen.su.domains/mc/
http://www.jstor.org/stable/2332914
http://gen.lib.rus.ec/book/index.php?md5=D6771334D555A7A71B6E968CF57A70B0
http://www.jstor.org/stable/2283154
https://doi.org/10.1145/3658161
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On the other hand, we take the constrain
∫
𝑔(𝑥)d𝑥 = 1 back to Eq. (33) to get complete 𝑔∗ (𝑥):

∫
Ω
𝑔∗ (𝑥) =

∫
Ω

√︃∑𝐾
𝑘=1 𝑓

2
𝑘
(𝑥)

√
𝜆

= 1 (34)

√
𝜆 =

∫
Ω

√√√
𝐾∑︁
𝑘=1

𝑓 2
𝑘
(𝑥) (35)

𝑔∗ (𝑥) =

√︃∑𝐾
𝑘=1 𝑓

2
𝑘
(𝑥)∫

Ω

√︃∑𝐾
𝑘=1 𝑓

2
𝑘
(𝑥)

(36)

We would see the minimum variance is achieved when we take 𝑔∗ (𝑥) ∝
√︃∑𝐾

𝑘=1 𝑓
2
𝑘
(𝑥). As a degenerate case, when

𝐾 = 1, we should simply sample proportional to the absolute value of 𝑓 (𝑥), which is consistent with existing
conclusion. □

A.2 Proof of Theorem 2

Theorem 2: The vector-valued importance sampling estimator is very likely to be incapable of achieving
zero-variance, even if we use optimal 𝑔∗ (𝑥) and all 𝐾 integrands are non-negative.

Proof. By combining Eq. (28) and Eq. (36), we could see:

Var
[
⟨F𝑁=1⟩LS

]∗
=

𝐾∑︁
𝑘=1

(∫
Ω

𝑓 2
𝑘
(𝑥)

𝑔∗ (𝑥) d𝑥 − 𝜇2
𝑘

)
(37)

=

∫
Ω

∑𝐾
𝑘=1 𝑓

2
𝑘
(𝑥)

𝑔∗ (𝑥) d𝑥 −
𝐾∑︁
𝑘=1

𝜇2
𝑘

(38)

=

∫
Ω

∑𝐾
𝑘=1 𝑓

2
𝑘
(𝑥)√︃∑𝐾

𝑘=1 𝑓
2
𝑘
(𝑥 )

𝜇𝐿2

−
𝐾∑︁
𝑘=1

𝜇2
𝑘

(39)

= 𝜇𝐿2

∫
Ω

√√√
𝐾∑︁
𝑘=1

𝑓 2
𝑘
(𝑥) −

𝐾∑︁
𝑘=1

𝜇2
𝑘

(40)

=
©­«
∫
Ω

√√√
𝐾∑︁
𝑘=1

𝑓 2
𝑘
(𝑥)d𝑥ª®¬

2

−
𝐾∑︁
𝑘=1

(∫
Ω
𝑓𝑘 (𝑥)d𝑥

)2
(41)

where we denote the normalizing term 𝜇𝐿2 =
∫
Ω

√︃∑𝐾
𝑘=1 𝑓

2
𝑘
(𝑥).
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Despite the clean form of Eq. (41), we look back to Eq. (39) to step further.

Var
[
⟨F𝑁=1⟩LS

]∗
=

∫
Ω

∑𝐾
𝑘=1 𝑓

2
𝑘
(𝑥)√︃∑𝐾

𝑘=1 𝑓
2
𝑘
(𝑥 )

𝜇𝐿2

−
𝐾∑︁
𝑘=1

𝜇2
𝑘

(42)

=

𝐾∑︁
𝑘=1

©­­«
∫
Ω

𝑓 2
𝑘
(𝑥)√︃∑𝐾

𝑘=1 𝑓
2
𝑘
(𝑥)

d𝑥𝜇𝐿2 − 𝜇2
𝑘

ª®®¬ (43)

=

𝐾∑︁
𝑘=1

©­­«
∫
Ω

𝑓 2
𝑘
(𝑥)√︃∑𝐾

𝑘=1 𝑓
2
𝑘
(𝑥)

d𝑥
∫
Ω

√√√
𝐾∑︁
𝑘=1

𝑓 2
𝑘
(𝑥)d𝑥 −

(∫
Ω
𝑓𝑘 (𝑥)d𝑥

)2ª®®¬ (44)

(45)

At this point, we use Cauchy-Schwarz Inequality for Integrals that:∫
𝑎2 (𝑥)d𝑥

∫
𝑏2 (𝑥)d𝑥 ≥

(∫
𝑎(𝑥)𝑏 (𝑥)d𝑥

)2
. (46)

When we let 𝑎(𝑥) = 𝑓𝑘 (𝑥 )

(∑𝐾𝑘=1 𝑓
2
𝑘
(𝑥 ))

1
4
, and 𝑏 (𝑥) =

(∑𝐾
𝑘=1 𝑓

2
𝑘
(𝑥)

) 1
4 , we can get:

∫
Ω

𝑓 2
𝑘
(𝑥)√︃∑𝐾

𝑘=1 𝑓
2
𝑘
(𝑥)

d𝑥
∫
Ω

√√√
𝐾∑︁
𝑘=1

𝑓 2
𝑘
(𝑥)d𝑥 ≥

(∫
Ω
𝑓𝑘 (𝑥)d𝑥

)2
(47)

Therefore, Var
[
⟨F𝑁=1⟩LS

]∗ ≥ 0, which is obvious as we would never get negative variance. More importantly,

the equality holds iff all 𝑎(𝑥) = 𝑓𝑘 (𝑥 )

(∑𝐾𝑘=1 𝑓
2
𝑘
(𝑥 ))

1
4
and 𝑏 (𝑥) =

(∑𝐾
𝑘=1 𝑓

2
𝑘
(𝑥)

) 1
4 are linearly dependent, which leads to:

𝑓1 (𝑥) ∝ 𝑓2 (𝑥) ∝ · · · ∝ 𝑓𝐾 (𝑥) ∝

√√√
𝐾∑︁
𝑘=1

𝑓 2
𝑘
(𝑥). (48)

This is possible only when all function 𝑓𝐾 (𝑥) have the same shape, and each of theorem need to be postivized as
the last term is always non-negative. □

A.3 Proof of Theorem 3

Theorem 3:When using optimal distributions for both vector-valued importance sampling and scalar-valued
importance sampling, the vector-valued importance sampling estimator always provides lower or equal variance
than the scalar-valued version, under equal samples comparison.
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Proof. From Eq. (70) and Eq. (41), we can see:

Var
[
⟨F𝑁 ⟩SR

]∗
=

(
𝐾∑︁
𝑘=1

∫
Ω
|𝑓𝑘 |d𝑥

)2

−
𝐾∑︁
𝑘=1

(∫
Ω
𝑓𝑘 (𝑥)d𝑥

)2
(49)

Var
[
⟨F𝑁=1⟩LS

]∗
=

©­«
∫
Ω

√√√
𝐾∑︁
𝑘=1

𝑓 2
𝑘
(𝑥)d𝑥ª®¬

2

−
𝐾∑︁
𝑘=1

(∫
Ω
𝑓𝑘 (𝑥)d𝑥

)2
(50)

Var
[
⟨F𝑁 ⟩SR

]∗ − Var
[
⟨F𝑁=1⟩LS

]∗
=

(∫
Ω

𝐾∑︁
𝑘=1

|𝑓𝑘 |d𝑥
)2

− ©­«
∫
Ω

√√√
𝐾∑︁
𝑘=1

𝑓 2
𝑘
(𝑥)d𝑥ª®¬

2

(51)

We can simply compare the left and right term by noticing the fact that the left term is a l1-norm of all 𝑓𝑘 , while
the right term is a l2-norm of all 𝑓𝑘 . We can see the left term is always greater or equal to the right term, which
means the lockstep estimator always provides equal or better variance than the single-response estimator.
To proof, we just need to notice the fact that:

(
∑︁
𝑘

|𝑓𝑘 (𝑥) |)2 =
∑︁
𝑘

|𝑓𝑘 (𝑥) |
∑︁
𝑘

|𝑓𝑘 (𝑥) | =
∑︁
𝑘

𝑓𝑘 (𝑥)2 +
∑︁
𝑘≠𝑗

|𝑓𝑘 (𝑥) | |𝑓𝑗 (𝑥) | ≥
∑︁
𝑘

𝑓𝑘 (𝑥)2 . (52)

And by adding square root, integral, and square, we can get the inequality we need to proof:

(∫
Ω

𝐾∑︁
𝑘=1

|𝑓𝑘 (𝑥) |d𝑥
)2

≥ ©­«
∫
Ω

√√√
𝐾∑︁
𝑘=1

𝑓 2
𝑘
(𝑥)d𝑥ª®¬

2

. (53)

The equality holds iff for all 𝑥 , at most one 𝑓𝑘 (𝑥) in all K functions has non-zero value. This is consistent with
our intuition because in this case, the lockstep estimator would only contribute to at most one function, making
it equivalent to the single-response estimator. □

A.4 Proof of Theorem 4

Theorem 4: The variance of the randommixture importance sampling estimator is minimized when𝑔(𝑥 |𝑘)𝑝 (𝑘) ∝
|𝑓𝑘 (𝑥) |.

Proof.

Var
[
⟨F𝑁 ⟩SR

]
=

𝐾∑︁
𝑘=1

Var
[〈
𝐹𝑘,𝑁

〉SR] (54)

=
1
𝑁

𝐾∑︁
𝑘=1

[∫
Ω𝑘

𝑓 2
𝑘
(𝑥)1𝑘=𝑘 (𝑥)
𝑔(𝑥 |𝑘)𝑝 (𝑘) d𝑥 − 𝜇2

𝑘

]
(55)
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The minimizing PDF 𝑔∗ (𝑥 |𝑘) can be found via Lagrange multipliers:

𝑔∗ (𝑥 |𝑘) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑔 (𝑥 |𝑘 )

[
𝐾∑︁
𝑘=1

(∫
Ω

𝑓 2
𝑘
(𝑥)1𝑘=𝑘 (𝑥)
𝑔(𝑥 |𝑘)𝑝 (𝑘) d𝑥 − 𝜇2

𝑘

)
+ 𝜆

(∫
Ω𝑘

𝑔(𝑥 |𝑘)d𝑥 − 1
)]

(56)

0 =
𝜕

𝜕𝑔∗ (𝑥 |𝑘)

[∫
Ω

𝑓 2
𝑘
(𝑥)1𝑘=𝑘 (𝑥)
𝑔∗ (𝑥 |𝑘) d𝑥 − 𝜇2

𝑘

]
+ 𝜆 (57)

0 = −
𝑓 2
𝑘
(𝑥)1𝑘=𝑘 (𝑥)
𝑔∗2 (𝑥 |𝑘) + 𝜆 (58)

𝑔∗ (𝑥 |𝑘) =

√︄
𝑓 2
𝑘
(𝑥)
𝜆

=
|𝑓𝑘 (𝑥) |∫
|𝑓𝑘 (𝑥) |d𝑥

. (59)

Similarly, the minimizing 𝑝∗ (𝑘) can be found by:

𝑝∗ (𝑘) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑝 (𝑘 )

[
𝐾∑︁
𝑘=1

(∫
Ω

𝑓 2
𝑘
(𝑥)1𝑘=𝑘 (𝑥)
𝑔(𝑥 |𝑘)𝑝 (𝑘) d𝑥 − 𝜇2

𝑘

)
+ 𝜆

(
𝐾∑︁
𝑘=1

𝑝 (𝑘) − 1
)]

(60)

0 =
𝜕

𝜕𝑝∗ (𝑘)

[
𝐾∑︁
𝑘=1

(∫
Ω

𝑓 2
𝑘
(𝑥)1𝑘=𝑘 (𝑥)
𝑔(𝑥 |𝑘)𝑝 (𝑘) d𝑥 − 𝜇2

𝑘

)
+ 𝜆

(
𝐾∑︁
𝑘=1

𝑝 (𝑘) − 1
)]

(61)

0 = −
∫
Ω

𝑓 2
𝑘
(𝑥)1𝑘=𝑘 (𝑥)

𝑔(𝑥 |𝑘)𝑝∗2 (𝑘) d𝑥 + 𝜆 (62)

𝑝∗2 (𝑘) =
∫
Ω

𝑓 2
𝑘
(𝑥)1𝑘=𝑘 (𝑥)
𝑔(𝑥 |𝑘)𝜆 d𝑥 (63)

𝑝∗2 (𝑘) = 1
𝜆

(∫
Ω
|𝑓𝑘 |d𝑥

)2
(64)

𝑝∗ (𝑘) =
∫
Ω
|𝑓𝑘 |d𝑥
√
𝜆

(65)

𝑝∗ (𝑘) =
∫
Ω
|𝑓𝑘 |d𝑥∑𝐾

𝑘=1
∫
Ω
|𝑓𝑘 |d𝑥

(66)

Therefore, the variance is minimized when each sample 𝑋 𝑗,𝑘 is sampled proportional to |𝑓𝑘 (𝑥) |:

𝑔∗ (𝑥 |𝑘) · 𝑝∗ (𝑘) = |𝑓𝑘 (𝑥) |∫
|𝑓𝑘 (𝑥) |d𝑥

∫
Ω
|𝑓𝑘 |d𝑥∑𝐾

𝑘=1
∫
Ω
|𝑓𝑘 |d𝑥

=
|𝑓𝑘 (𝑥) |∑𝐾

𝑘=1
∫
Ω
|𝑓𝑘 |d𝑥

, (67)
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where we will have the minimum variance of the estimator:

Var
[
⟨F𝑁 ⟩SR

]∗
=

𝐾∑︁
𝑘=1

∫
Ω𝑘

𝑓 2
𝑘
(𝑥)1𝑘=𝑘 (𝑥)

𝑔∗ (𝑥 |𝑘)𝑝∗ (𝑘) d𝑥 − 𝜇2
𝑘

(68)

=

𝐾∑︁
𝑘=1

∫
Ω𝑘

𝑓 2
𝑘
(𝑥)1𝑘=𝑘 (𝑥)
| 𝑓𝑘 (𝑥 ) |∑𝐾

𝑘=1
∫
Ω
| 𝑓𝑘 |d𝑥

d𝑥 − 𝜇2
𝑘

(69)

=

(
𝐾∑︁
𝑘=1

∫
Ω
|𝑓𝑘 |d𝑥

)2

−
𝐾∑︁
𝑘=1

(∫
Ω
𝑓𝑘 (𝑥)d𝑥

)2
(70)

□

A.5 Proof of Theorem 5

Theorem 5: When using optimal distributions for both vector-valued importance sampling (Estimator 1) and
random-mixture importance sampling (Estimator 3), the vector-valued importance sampling estimator always
provides lower or equal variance than the random-mixture version, under equal samples comparison.

Proof. From Eq. (70) and Eq. (41), we can see:

Var
[
⟨F𝑁 ⟩SR

]∗
=

(
𝐾∑︁
𝑘=1

∫
Ω
|𝑓𝑘 |d𝑥

)2

−
𝐾∑︁
𝑘=1

(∫
Ω
𝑓𝑘 (𝑥)d𝑥

)2
(71)

Var
[
⟨F𝑁=1⟩LS

]∗
=

©­«
∫
Ω

√√√
𝐾∑︁
𝑘=1

𝑓 2
𝑘
(𝑥)d𝑥ª®¬

2

−
𝐾∑︁
𝑘=1

(∫
Ω
𝑓𝑘 (𝑥)d𝑥

)2
(72)

Var
[
⟨F𝑁 ⟩SR

]∗ − Var
[
⟨F𝑁=1⟩LS

]∗
=

(∫
Ω

𝐾∑︁
𝑘=1

|𝑓𝑘 |d𝑥
)2

− ©­«
∫
Ω

√√√
𝐾∑︁
𝑘=1

𝑓 2
𝑘
(𝑥)d𝑥ª®¬

2

(73)

We can simply compare the left and right term by noticing the fact that the left term is a l1-norm of all 𝑓𝑘 , while
the right term is a l2-norm of all 𝑓𝑘 . We can see the left term is always greater or equal to the right term, which
means the lockstep estimator always provides equal or better variance than the single-response estimator.
To proof, we just need to notice the fact that:

(
∑︁
𝑘

|𝑓𝑘 (𝑥) |)2 =
∑︁
𝑘

|𝑓𝑘 (𝑥) |
∑︁
𝑘

|𝑓𝑘 (𝑥) | =
∑︁
𝑘

𝑓𝑘 (𝑥)2 +
∑︁
𝑘≠𝑗

|𝑓𝑘 (𝑥) | |𝑓𝑗 (𝑥) | ≥
∑︁
𝑘

𝑓𝑘 (𝑥)2 . (74)

And by adding square root, integral, and square, we can get the inequality we need to proof:(∫
Ω

𝐾∑︁
𝑘=1

|𝑓𝑘 (𝑥) |d𝑥
)2

≥ ©­«
∫
Ω

√√√
𝐾∑︁
𝑘=1

𝑓 2
𝑘
(𝑥)d𝑥ª®¬

2

. (75)

The equality holds iff for all 𝑥 , at most one 𝑓𝑘 (𝑥) in all K functions has non-zero value. This is consistent with
our intuition because in this case, the lockstep estimator would only contribute to at most one function, making
it equivalent to the single-response estimator. □
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A.6 Proof of Theorem 6

Theorem 6: When using arbitrary but same distributions 𝑔(𝑥) for both vector-valued importance sampling
(Estimator 1) and the partial vector-valued version (Estimator 4), the vector-valued importance sampling estimator
always provides lower or equal variance, under equal samples comparison.

Proof.

Var
[
⟨F𝑁 ⟩Rej-LS

]
=

∑︁
𝑘

(∫
Ω

𝑓 2 (𝑥)
𝑔(𝑥)𝑝𝑎𝑐𝑐 (𝑥 |𝑘)

d𝜇 (𝑥) − 𝜇2
𝑘

)
(76)

≥
∑︁
𝑘

(∫
Ω

𝑓 2 (𝑥)
𝑔(𝑥) d𝜇 (𝑥) − 𝜇

2
𝑘

)
(77)

= Var
[
⟨F𝑁 ⟩LS

]
. (78)

Given the fact that 𝑝𝑎𝑐𝑐 (𝑥 |𝑘) ≤ 1, we can observe the variance of the rejectable lockstep estimator is always
greater or equal to its counterpart without rejection. The equality holds iff the rejection only happens when
𝑓𝑘 (𝑥) = 0. Therefore rejection itself would not help to reduce the variance of the estimator, intuitively because of
the rejection merely wastes more samples, while importance sampling expects us to move those reduced samples
to the high-value regions. □

A.7 Proof of Theorem 7

Proof. As an unbiased estimator, the MSE equals to its variance.

𝑓 = 𝑓 −
𝐾∑︁
𝑘=1

𝛽𝑘ℎ𝑘 +
𝐾∑︁
𝑘=1

𝛽𝑘𝐻𝑘 (79)

𝜎2 =E


(
𝑓 (𝑥) − 𝐹 −

𝐾∑︁
𝑘=1

𝛽𝑘 (ℎ𝑘 (𝑥) − 𝐻𝑘 )
)2 (80)

=Var [𝑓 (𝑥)] + Var
[
𝐾∑︁
𝑘=1

𝛽𝑘 (ℎ𝑘 (𝑥) − 𝐻𝑘 )
]

(81)

− 2Cov
[
𝑓 (𝑥),

𝐾∑︁
𝑘=1

𝛽𝑘 (ℎ𝑘 (𝑥) − 𝐻𝑘 )
]

(82)

=Var [𝑓 (𝑥)] − 2
𝐾∑︁
𝑘=1

𝛽𝑘Cov [𝑓 (𝑥), (ℎ𝑘 (𝑥) − 𝐻𝑘 )] (83)

+ 2
∑︁
𝑖

∑︁
𝑗

𝛽𝑖𝛽 𝑗Cov((ℎ𝑖 (𝑥) − 𝐻𝑖 ), (ℎ 𝑗 (𝑥) − 𝐻 𝑗 )) (84)

By differentiating, we will see

𝛽∗ = Var(ℎ(𝑥))−1Cov(ℎ(𝑥), 𝑓 (𝑥)) (85)

□
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A.8 Proof of Theorem 8

For the ratio estimator, the sample summation happens in both the numerator and the denominator, therefore we
cannot directly simplify it to 𝑁 = 1 case. Therefore, we will directly evaluate the MSE in high-dimensional space
𝑌 , where the element is a list of samples, 𝑌𝑖 = (𝑋1, 𝑋2, · · · , 𝑋𝑁 ). Therefore, for a given sample count 𝑁 , we can
have:

MSE
[
𝐹𝑅𝑎𝑡𝑖𝑜

]
=

∫ 
∑𝑁
𝑗=1

𝑓 (𝑋 𝑗 )
𝑔 (𝑋 𝑗 )∑𝑁

𝑗=1
ℎ (𝑋 𝑗 )
𝑔 (𝑋 𝑗 )

−
∫

𝑓 (𝑥)d𝑥


2
𝑁∏
𝑗=1

𝑔(𝑋 𝑗 )d𝑥 (86)

=

∫ 
∑𝑁
𝑗=1

𝑓 (𝑋 𝑗 )−𝐹 ·ℎ (𝑥 )
𝑔 (𝑋 𝑗 )∑𝑁

𝑗=1
ℎ (𝑋 𝑗 )
𝑔 (𝑋 𝑗 )


2
𝑁∏
𝑗=1

𝑔(𝑋 𝑗 )d𝑥 (87)

=

∫ 
∑𝑁
𝑗=1

𝑓𝑐𝑣 (𝑋 𝑗 )
𝑔 (𝑋 𝑗 )∑𝑁

𝑗=1
ℎ (𝑋 𝑗 )
𝑔 (𝑋 𝑗 )


2
𝑁∏
𝑗=1

𝑔(𝑋 𝑗 )d𝑥, (88)

where we denote 𝑓𝑐𝑣 (𝑥) = 𝑓 (𝑥) − 𝐹 · ℎ(𝑥) for simplicity. For further simplification, we extend Powell’s[Powell
and Swann 1966] proof for the vanilla version of the WIS estimator, where 𝑔(𝑥) = 1. It start with splitting the
domain 𝑌 into two parts, 𝐴𝑁 and 𝐵𝑁 , defined as:

𝐴𝑁 =

{
𝑦 :

����� 𝑁∑︁
𝑗=1

ℎ(𝑋𝑖 )
𝑔(𝑋𝑖 )

− 𝑁
����� < 𝑁 0.8

}
(89)

𝐵𝑁 =

{
𝑦 :

����� 𝑁∑︁
𝑗=1

ℎ(𝑋𝑖 )
𝑔(𝑋𝑖 )

− 𝑁
����� ≥ 𝑁 0.8

}
. (90)

Then we can split the integral Eq. (88) into two parts:

MSE
[
𝐹𝑅𝑎𝑡𝑖𝑜

]
=

∫
𝐴𝑁


∑𝑁
𝑗=1

𝑓𝑐𝑣 (𝑋 𝑗 )
𝑔 (𝑋 𝑗 )∑𝑁

𝑗=1
ℎ (𝑋 𝑗 )
𝑔 (𝑋 𝑗 )


2
𝑁∏
𝑗=1

𝑔(𝑋 𝑗 )d𝑥 (91)

+
∫
𝐵𝑁


∑𝑁
𝑗=1

𝑓𝑐𝑣 (𝑋 𝑗 )
𝑔 (𝑋 𝑗 )∑𝑁

𝑗=1
ℎ (𝑋 𝑗 )
𝑔 (𝑋 𝑗 )


2
𝑁∏
𝑗=1

𝑔(𝑋 𝑗 )d𝑥 . (92)

Now we first try to simplify Eq. (92), by noticing the subdomain 𝐴𝑁 is a small interval around 𝑁 :

𝑁 (1 − 𝑁 −0.2) <
𝑁∑︁
𝑗=1

ℎ(𝑋𝑖 )
𝑔(𝑋𝑖 )

< 𝑁 (1 + 𝑁 −0.2). (93)

When 𝑁 is large enough, we can use the approximation
∑𝑁
𝑗=1

ℎ (𝑋𝑖 )
𝑔 (𝑋𝑖 ) ≈ 𝑁 , and the approximation deviation is up

to a constant factor (1 − 𝑁 −0.2).
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According to the domain division, we can then transform the first term in Eq. (92) as follows:

∫
𝐴𝑁


∑𝑁
𝑗=1

𝑓 ′ (𝑥𝑖 )
𝑔 (𝑥𝑖 )∑𝑁

𝑗=1
ℎ (𝑥𝑗 )
𝑔 (𝑥𝑖 )


2
𝑁∏
𝑗=1
𝑔 (𝑋 𝑗 )d𝑦 ≈ 1

𝑁 2

∫
𝐴𝑁

[
𝑁∑︁
𝑗=1

𝑓 ′ (𝑥𝑖 )
𝑔 (𝑥𝑖 )

]2 𝑁∏
𝑗=1
𝑔 (𝑋 𝑗 )d𝑦 (94)

=
1
𝑁 2

©­«
∫
𝐽

[
𝑁∑︁
𝑗=1

𝑓 ′ (𝑥𝑖 )
𝑔 (𝑥𝑖 )

]2 𝑁∏
𝑗=1
𝑔 (𝑋 𝑗 )d𝑦 −

∫
𝐵𝑁

[
𝑁∑︁
𝑗=1

𝑓 ′ (𝑥𝑖 )
𝑔 (𝑥𝑖 )

]2 𝑁∏
𝑗=1
𝑔 (𝑋 𝑗 )d𝑦

ª®¬ (95)

We will simplify the first term in Eq. (95) further, but firstly, we need to realize the fact:∫
𝑓cv (𝑥 )d𝑥 =

∫
𝑓 (𝑥 ) − F · ℎ (𝑥 )d𝑥 =

∫
𝑓 (𝑥 )d𝑥 − F ·

∫
ℎ (𝑥 )d𝑥 = F − F · 1 = 0. (96)

Then we can simplify the first term in Eq. (95) as follows:∫
𝐽

[
𝑁∑︁
𝑖=1

𝑓𝑐𝑣 (𝑥𝑖 )
𝑔(𝑥𝑖 )

]2 𝑁∏
𝑘=1

𝑔(𝑋𝑘 )d𝑦 (97)

=

∫
𝐼

· · ·
∫
𝐼

[
𝑁∑︁
𝑖=1

𝑓𝑐𝑣 (𝑥𝑖 )
𝑔(𝑥𝑖 )

]2 𝑁∏
𝑘=1

𝑔(𝑋𝑘 )d𝑋1 · · · d𝑋𝑁 (98)

=

∫
𝐼

· · ·
∫
𝐼

[
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑓𝑐𝑣 (𝑥𝑖 )
𝑔(𝑥𝑖 )

𝑓𝑐𝑣 (𝑥 𝑗 )
𝑔(𝑥 𝑗 )

]
𝑁∏
𝑘=1

𝑔(𝑋𝑘 )d𝑋1 · · · d𝑋𝑁 (99)

=

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

∫
𝐼

· · ·
∫
𝐼

[
𝑓𝑐𝑣 (𝑥𝑖 )
𝑔(𝑥𝑖 )

𝑓𝑐𝑣 (𝑥 𝑗 )
𝑔(𝑥 𝑗 )

] 𝑁∏
𝑘=1

𝑔(𝑋𝑘 )d𝑋1 · · · d𝑋𝑁 (100)

=

𝑁∑︁
𝑖=1

∫
𝐼

· · ·
∫
𝐼

[𝑓𝑐𝑣 (𝑥𝑖 )]2

𝑔(𝑥𝑖 )

𝑁∏
𝑘=1,𝑘≠𝑖

𝑔(𝑋𝑘 )d𝑋1 · · · d𝑋𝑁 (101)

+
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

∫
𝐼

· · ·
∫
𝐼

[
𝑓𝑐𝑣 (𝑥𝑖 ) 𝑓𝑐𝑣 (𝑥 𝑗 )

] 𝑁∏
𝑘=1,𝑘≠𝑖, 𝑗

𝑔(𝑋𝑘 )d𝑋1 · · · d𝑋𝑁 (102)

=𝑁

∫
𝐼

[𝑓𝑐𝑣 (𝑥)]2

𝑔(𝑥) d𝑥 (103)

Noticing that Eq. (102) is 0 because of Eq. (96). Intuitively, it is exactly the same as how the variance of the Monte
Carlo estimator is reduced with 1

𝑁
factor. Then we can simplify the first term of Eq. (95) as:

1
𝑁 2

∫
𝐽

[
𝑁∑︁
𝑗=1

𝑓𝑐𝑣 (𝑥𝑖 )
𝑔(𝑥𝑖 )

]2 𝑁∏
𝑗=1

𝑔(𝑋 𝑗 )d𝑦 =
1
𝑁

∫
𝐼

[𝑓𝑐𝑣 (𝑥)]2

𝑔(𝑥) d𝑥 (104)

Then we move to the second term of Eq. (92), where we will proof it combined with the second term of Eq. (95)
is a higher-order infinitesimal compared to the first term, i.e.:∫

𝐵𝑁

©­­«

∑𝑁
𝑗=1

𝑓𝑐𝑣 (𝑋 𝑗 )
𝑔 (𝑋 𝑗 )∑𝑁

𝑗=1
ℎ (𝑋 𝑗 )
𝑔 (𝑋 𝑗 )


2

− 1
𝑁 2

[
𝑁∑︁
𝑗=1

𝑓𝑐𝑣 (𝑥𝑖 )
𝑔(𝑥𝑖 )

]2ª®®¬
𝑁∏
𝑗=1

𝑔(𝑋 𝑗 )d𝑥 ≈ 𝑜 ( 1
𝑁
). (105)



Vector-Valued Monte Carlo Integration Using Ratio Control Variates: Supplementary Material • 21

With valid setting of 𝑓 (𝑥), ℎ(𝑥) and 𝑔(𝑥), we should ensure the ©­«
[∑𝑁

𝑗=1
𝑓𝑐𝑣 (𝑋𝑗 )
𝑔 (𝑋𝑗 )∑𝑁

𝑗=1
ℎ (𝑋𝑗 )
𝑔 (𝑋𝑗 )

]2

− 1
𝑁 2

[∑𝑁
𝑗=1

𝑓𝑐𝑣 (𝑥𝑖 )
𝑔 (𝑥𝑖 )

]2ª®¬ term should

be bounded by a constant. Therefore, we only need to proof the remaining integral be higher-order infinitesimal:∫
𝐵𝑁

∏𝑁
𝑗=1 𝑔(𝑋 𝑗 )d𝑥 = 𝑜 ( 1

𝑁
).

To proof this, we first look at the forth moment of the function
(
ℎ (𝑥 )
𝑔 (𝑥 ) − 1

)
:

𝑀4 =

∫
𝐽

[
𝑁∑︁
𝑖=1

ℎ(𝑋𝑖 )
𝑔(𝑋𝑖 )

− 𝑁
]4 𝑁∏
𝑚=1

𝑔(𝑋𝑚)d𝑦 (106)

=

∫
𝐽

[
𝑁∑︁
𝑖=1

(
ℎ(𝑋𝑖 )
𝑔(𝑋𝑖 )

− 1
)]4 𝑁∏

𝑚=1
𝑔(𝑋𝑚)d𝑦 (107)

=
∑︁
𝑖

∑︁
𝑗

∑︁
𝑘

∑︁
𝑙

∫
𝐽

(
ℎ(𝑋𝑖 )
𝑔(𝑋𝑖 )

− 1
) (
ℎ(𝑋 𝑗 )
𝑔(𝑋 𝑗 )

− 1
)

(108)(
ℎ(𝑋𝑘 )
𝑔(𝑋𝑘 )

− 1
) (
ℎ(𝑋𝑙 )
𝑔(𝑋𝑙 )

− 1
) 𝑁∏
𝑚=1

𝑔(𝑋𝑚)d𝑦 (109)

= 𝑁

∫
𝐼

(
ℎ(𝑥)
𝑔(𝑥) − 1

)4
𝑔(𝑥)d𝑥 (110)

+ 3𝑁 (𝑁 − 1)
[∫
𝐼

(
ℎ(𝑥)
𝑔(𝑥) − 1

)2
𝑔(𝑥)d𝑥

]2

(111)

= 𝑂 (𝑁 2). (112)

By the definition of 𝐵𝑁 ,

𝑀 ≥
∫
𝐵𝑁

[
𝑁∑︁
𝑖=1

ℎ(𝑋𝑖 )
𝑔(𝑋𝑖 )

− 𝑁
]

𝑁∏
𝑚=1

𝑔(𝑋𝑚)d𝑦 (113)

≥
∫
𝐵𝑁

(𝑁 0.8)4
𝑁∏
𝑚=1

𝑔(𝑋𝑚)d𝑦 (114)

= 𝑁 3.2
∫
𝐵𝑁

𝑁∏
𝑚=1

𝑔(𝑋𝑚)d𝑦 (115)

𝑂 (𝑁 2) ≥ 𝑁 3.2
∫
𝐵𝑁

𝑁∏
𝑚=1

𝑔(𝑋𝑚)d𝑦 (116)∫
𝐵𝑁

𝑁∏
𝑚=1

𝑔(𝑋𝑚)d𝑦 ≤ 𝑂 (𝑁 −1.2) (117)∫
𝐵𝑁

𝑁∏
𝑚=1

𝑔(𝑋𝑚)d𝑦 = 𝑜 ( 1
𝑁
). (118)
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Therefore, if we discard the higher-order infinitesimal, we can approximate the MSE with only the first term
of Eq. (95), and by Eq. (104), we finally have:

MSE
[
𝐹𝑅𝑎𝑡𝑖𝑜

]
≈ 1
𝑁

∫ (𝑓 (𝑥) − 𝐹 · ℎ(𝑥))2

𝑔(𝑥) d𝑥 . (119)

A.9 Proof of Theorem 10

To start with, we define 𝑓 = 𝐹 + 𝜖 and ℎ = 𝐻 + 𝜉 , thus:

E [𝜖𝑁 ] = E

[
𝑁∑︁
𝑖

𝑓 (𝑋𝑖 ) − 𝐹
]
= 0 (120)

E
[
𝜉𝑁

]
= E

[
𝑁∑︁
𝑖

ℎ(𝑋𝑖 ) − 𝐹
]
= 0 (121)

E
[
𝜉2
𝑁

]
= E


(
𝑁∑︁
𝑖

ℎ(𝑋𝑖 ) − 𝐻
)2 =

1
𝑁
Var [ℎ(𝑥)] (122)

Then, we rewrite the expectation of the ratio estimator with 𝜖 and 𝜉 definition:

E
[
𝑓

ℎ̄

]
= E


𝐹

(
1 + 𝜖𝑁

𝐹

)
𝐻

(
1 + 𝜉𝑁

𝐻

)  (123)

To further simplify, we consider the geometric series, where it is well-known [Andrews 1998] that:
∑∞
𝑖=0 𝑎𝑥

𝑖 =
𝑎

1−𝑥 holds for |𝑥 | < 1. By letting 𝑎 = 1 and 𝑥 = −𝑡 , we can have:

(1 + 𝑡)−1 =
∞∑︁
𝑖=0

(−𝑡)𝑖 = 1 − 𝑡 + 𝑡2 − 𝑡3 + · · · (124)

As 𝜉𝑁 have expectation 0 and standard Monte Carlo convergence rate, it is fair to assume 𝜉𝑁
𝐻

≤ 1 when N is
relatively large. Thus by substitute Eq. (124) into Eq. (123), we have:

E
[
𝑓

ℎ̄

]
= E

[
𝐹

(
1 + 𝜖𝑁

𝐹

)
𝐻

[
1 − 𝜉𝑁

𝐻
+

(
𝜉𝑁

𝐻

)2
−

(
𝜉𝑁

𝐻

)3
+ · · ·

] ]
(125)

=
𝐹

𝐻
E

[
1 + 𝜖𝑁

𝐹
− 𝜉𝑁

𝐻
− 𝜖𝑁

𝐹

𝜉𝑁

𝐻
+

(
𝜉𝑁

𝐻

)2
+ · · ·

]
(126)

≈ 𝐹

𝐻
E

[
1 + 𝜖𝑁

𝐹
− 𝜉𝑁

𝐻
− 𝜖𝑁

𝐹

𝜉𝑁

𝐻
+

(
𝜉𝑁

𝐻

)2]
(127)
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by neglecting the higher than 2-order terms. Because of Eq. (120) to Eq. (122),the only unknown term is E
[
𝜖𝑁 𝜉𝑁

]
,

which we derive as:

E
[
𝜖𝑁 𝜉𝑁

]
=

1
𝑁 2E

[
𝑁∑︁
𝑖

𝜖 (𝑋𝑖 )
𝑁∑︁
𝑖

𝜉 (𝑋𝑖 )
]

(128)

=
1
𝑁 2E

[
𝑁∑︁
𝑖=1

𝜖 (𝑋𝑖 )𝜉 (𝑋𝑖 ) +
∑︁
𝑖≠𝑗

𝜖 (𝑋𝑖 )𝜉 (𝑋 𝑗 )
]

(129)

=
1
𝑁

∫
(𝑓 (𝑥) − 𝐹 ) (ℎ(𝑥) − 𝐻 )d𝑥 (130)

Also combining Eq. (120) to Eq. (122), we can see:

E
[
𝑓

ℎ̄

]
≈ 𝐹

𝐻

(
1 + 1

𝑁

[
Var [ℎ(𝑥)]

𝐻 2 − Cov [ℎ(𝑥), 𝑓 (𝑥)]
𝐹𝐻

] )
(131)

Thus, the bias can be approximated as:

𝐵𝑖𝑎𝑠

[
𝑓

ℎ̄
· 𝐻

]
≈ 𝐹

𝑁

[
Var [ℎ(𝑥)]

𝐻 2 − Cov [ℎ(𝑥), 𝑓 (𝑥)]
𝐹𝐻

]
(132)

A.10 Proof of the unbiasedness of Hartley Ross

To proof the unbiasedness of Hartley Ross’s Estimator [Hartley and Ross 1954], we start from Cov(𝐴, 𝐵) =

E [𝐴𝐵] − E [𝐴] E [𝐵], and by taking 𝐴 =
𝑓 (𝑋𝑖 )
ℎ (𝑋𝑖 ) and 𝐵 = ℎ(𝑋𝑖 ), we have: Cov( 𝑓

ℎ
, ℎ) = E [𝑓 ] − E

[
𝑓

ℎ

]
E [ℎ].

Therefore:

E [𝑓 ]
E [ℎ] =E

[
𝑓

ℎ

]
+
Cov( 𝑓

ℎ
, ℎ)

E [ℎ] =
1
𝑁

𝑁∑︁
𝑖=1

𝑓 (𝑋𝑖 )
ℎ(𝑋𝑖 )

(133)

+
𝑁

∑𝑁
𝑖=1

(
𝑓 (𝑋𝑖 )
ℎ (𝑋𝑖 ) −

1
𝑁

∑
𝑗
𝑓 (𝑋 𝑗 )
ℎ (𝑋 𝑗 )

) (
ℎ(𝑋𝑖 ) − 1

𝑁

∑
𝑗 ℎ(𝑋 𝑗 )

)
(𝑁 − 1)𝐻 (134)

=
1
𝑁

𝑁∑︁
𝑖=1

𝑓 (𝑋𝑖 )
ℎ(𝑋𝑖 )

+ 𝑁

𝑁 − 1

∑𝑁
𝑖=1 𝑓 (𝑋𝑖 ) −

∑𝑁
𝑖=1

𝑓 (𝑋𝑖 )
ℎ (𝑋𝑖 )

∑𝑁
𝑖=1 ℎ(𝑋𝑖 )

𝐻
. (135)

A.11 Proof of Theorem 11

Proof. For the multiple regression ratio estimator:

𝐹𝑅𝑎𝑡𝑖𝑜𝑀𝑅 =

[
1
𝑁

𝑁∑︁
𝑖=1

𝑓 (𝑋𝑖 )
]

𝐾∏
𝑘=1

(
𝐻1

1
𝑁

∑𝑁
𝑖=1 ℎ𝑘 (𝑋𝑖 )

)𝛼𝑘
(136)
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We use first-order Taylor expansion [Jungtaek Oh and Shin 2021] to approximate the estimator:

𝐹𝑅𝑎𝑡𝑖𝑜𝑀𝑅 =

[
1
𝑁

𝑁∑︁
𝑖=1

𝑓 (𝑋𝑖 )
]

𝐾∏
𝑘=1

(
𝐻𝑘

1
𝑁

∑𝑁
𝑖=1 ℎ𝑘 (𝑋𝑖 )

)𝛼𝑘
(137)

≈ 𝑓

[
1 −

𝐾∑︁
𝑘=1

𝛼𝑘

(
1 − 𝐻𝑘

ℎ𝑘

)]
(138)

= 𝑓 (1 −
𝐾∑︁
𝑘=1

𝛼𝑘 ) +
𝐾∑︁
𝑘=1

𝛼𝑘
𝑓

ℎ𝑘
𝐻𝑘 (139)

To minimize the approximate MSE, we first define 𝛽𝑘 = 𝛼𝑘
𝑓

ℎ𝑘
, thus:

𝐼 = 𝑓 (1 −
𝐾∑︁
𝑘=1

𝛼𝑘 ) +
𝐾∑︁
𝑘=1

𝛼𝑘
𝑓

ℎ𝑘
𝐻𝑘 (140)

= 𝑓 (1 −
𝐾∑︁
𝑘=1

𝛽𝑘
ℎ𝑘

𝑓
) +

𝐾∑︁
𝑘=1

𝛽𝑘𝐻𝑘 (141)

= 𝑓 −
𝐾∑︁
𝑘=1

𝛽𝑘ℎ𝑘 +
𝐾∑︁
𝑘=1

𝛽𝑘𝐻𝑘 . (142)

We can observe Eq. (142) is the same as theMultiple Regression Control Variates estimator in Eq. (79). Conceptually,
it means the first-order approximate MSE of this estimator is equivalent to the Multiple Regression Control
Variates estimator, with an extra 𝑓

ℎ𝑘
≈ 𝐹

𝐻𝑘
scaling factor for each auxiliary variable ℎ𝑘 .

Therefore, minimizing the approximate MSE, we can start with solving the optimal 𝛽∗
𝑘
for the equivalent

Multiple Regression Control Variates estimator, and simply get the optimal 𝛼∗
𝑘
= 𝛽∗

𝑘

ℎ𝑘

𝑓
. □

A.12 Proof of Theorem 12

Proof.

𝐹𝑅𝑎𝑡𝑖𝑜𝑅𝑀 =

[∑𝑁
𝑖=1 𝑓 (𝑋𝑖 )

] [∑𝐾
𝑘=1 𝛼𝑘𝐻𝑘

]∑𝑁
𝑖=1

[∑𝐾
𝑘=1 𝛼𝑘ℎ𝑘 (𝑋𝑖 )

] , (143)

where 𝛼𝑘 , 𝑘 = 1, · · · , 𝐾 are constants with constraint
∑𝐾
𝑘=1 𝛼𝑘 = 1.

With the aforementioned approximation:

MSE(𝐹𝑅𝑎𝑡𝑖𝑜𝑅𝑀 ) ≈
∫ (

𝑓 (𝑥) − 𝐹 · (∑𝐾
𝑘=1 𝛼𝑘ℎ𝑘 (𝑥))

)2

𝑔(𝑥) d𝑥 (144)

The minimizing parameters 𝛼𝑘 can be found via minimizing Lagrangian:

L =MSE(𝐹𝑅𝑎𝑡𝑖𝑜𝑅𝑀 ) − 𝜆(
𝐾∑︁
𝑘=1

𝛼𝑘 − 1) (145)

𝜕L
𝜕𝛼𝑖

=

∫ 2 (−𝐹 · ℎ𝑖 (𝑥))
𝑔(𝑥)

(
𝑓 (𝑥) − 𝐹 · (

𝐾∑︁
𝑘=1

𝛼𝑘ℎ𝑘 (𝑥))
)
d𝑥 − 𝜆 (146)



Vector-Valued Monte Carlo Integration Using Ratio Control Variates: Supplementary Material • 25

As we know 𝜕L
𝜕𝛼𝑖

= 0 for all 𝑖 = 1, · · · , 𝐾 , we first cancel out the constant 𝜆 by subtracting 𝜕L
𝜕𝛼𝑖

− 𝜕L
𝜕𝛼1

= 0 =∫ 2 (−𝐹 · (ℎ𝑖 (𝑥) − ℎ1 (𝑥)))
𝑔(𝑥)

(
𝑓 (𝑥) − 𝐹 · (

𝐾∑︁
𝑘=1

𝛼𝑘ℎ𝑘 (𝑥))
)
d𝑥 (147)

Then, we remove all 𝛼1 by substitute 𝛼1 = 1 − ∑𝐾
𝑘=2 𝛼𝑘 , thus:

𝐾∑︁
𝑘=1

𝛼𝑘ℎ𝑘 (𝑥) = ℎ1 (𝑥) +
𝐾∑︁
𝑘=2

𝛼𝑘 (ℎ𝑘 (𝑥) − ℎ1 (𝑥)). (148)

To further simplify the form, we denote:

𝐴𝑖 =

∫ 1
𝑔(𝑥) [ℎ𝑖 (𝑥) − ℎ1 (𝑥)] [𝑓 (𝑥) − 𝐹 · ℎ1 (𝑥)] d𝑥 (149)

𝐵𝑖𝑘 =

∫
𝐹

𝑔(𝑥) [ℎ𝑖 (𝑥) − ℎ1 (𝑥)] [ℎ𝑘 (𝑥) − ℎ1 (𝑥)] d𝑥 . (150)

And by combining the above equations back to Eq. (147), we will see:

𝐴𝑖 =

𝐾∑︁
𝑘=2

𝛼𝑘𝐵𝑖𝑘 , (151)

holds for all 𝑖 = 2, · · · , 𝐾 . Therefore we can see its matrix form:
𝐴2
𝐴3
...

𝐴𝐾


=


𝐵22 𝐵23 · · · 𝐵2𝐾
𝐵32 𝐵33 · · · 𝐵3𝐾
...

...
. . .

...

𝐵𝐾2 𝐵𝐾3 · · · 𝐵𝐾𝐾



𝛼2
𝛼3
...

𝛼𝐾


, (152)

which can be solved by the least square method. Then we can compute the canceled out term 𝛼1 = 1 − ∑𝐾
𝑘=2 𝛼𝑘 .

For the special case of two auxiliary variables, we can directly solve the optimality by:

𝛼∗2 =
𝐴2
𝐵22

=

∫ 1
𝑔 (𝑥 ) [ℎ2 (𝑥) − ℎ1 (𝑥)] [𝑓 (𝑥) − 𝐹 · ℎ1 (𝑥)] d𝑥∫

𝐹
𝑔 (𝑥 ) [ℎ2 (𝑥) − ℎ1 (𝑥)] [ℎ2 (𝑥) − ℎ1 (𝑥)] d𝑥

(153)

𝛼∗1 = 1 − 𝛼∗2 =

∫ 1
𝑔 (𝑥 ) [ℎ2 (𝑥) − ℎ1 (𝑥)] [𝐹 · ℎ2 (𝑥) − 𝑓 (𝑥)] d𝑥∫

𝐹
𝑔 (𝑥 ) [ℎ2 (𝑥) − ℎ1 (𝑥)] [ℎ2 (𝑥) − ℎ1 (𝑥)] d𝑥

(154)

□

A.13 Approx Optimal Deterministic Mixture Multiple Ratio Estimator

Proof. For the Deterministic Mixture Multiple Ratio Estimator
𝐾∑︁
𝑘=1

∑𝑁
𝑖=1𝑤𝑘 (𝑋𝑖 ) 𝑓 (𝑋𝑖 )𝐻1∑𝑁

𝑖=1 ℎ𝑘 (𝑋𝑖 )
(155)

The Approximate MSE. With approximation mentioned above:

MSE(𝐹𝑅𝑎𝑡𝑖𝑜𝐷𝑀 ) ≈
𝐾∑︁
𝑘=1

∫ (
𝑤𝑘 (𝑥) 𝑓 (𝑥) − ℎ𝑘 (𝑥) ·

∫
𝑤𝑘 (𝑥) 𝑓 (𝑥)d𝑥

)2

𝑔(𝑥) d𝑥 (156)
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Optimal𝑤𝑘 (𝑥) minimizing Approximate MSE. The minimizing weighting functions𝑤𝑘 (𝑥) can be found via
minimizing Lagrangian:

L = MSE(𝐹𝑅𝑎𝑡𝑖𝑜𝐷𝑀 ) −
∫

𝜆(𝑥)
(
𝐾∑︁
𝑘=1

𝑤𝑘 (𝑥) − 1
)
d𝑥 . (157)

Taking partial functional derivatives to zero:

2𝑓 2 (𝑥)𝑤𝑖 (𝑥)
𝑔(𝑥) +

2𝑓 (𝑥)ℎ2
𝑘
(𝑥)

∫
𝑤𝑖 (𝑥) 𝑓 (𝑥)d𝑥

𝑔(𝑥) (158)

− 2
(
𝑓 (𝑥)ℎ𝑘 (𝑥)

∫
𝑤𝑖 (𝑥) 𝑓 (𝑥)d𝑥

)
(159)

− 2𝑓 (𝑥)
∫

𝑤𝑖 (𝑥) 𝑓 (𝑥)ℎ𝑖 (𝑥)d𝑥 − 𝜆 = 0 (160)

However, unfortunately, we find that solving this expression symbolically is challenging.
□
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